Detecting bursts in the EEG of very and extremely premature infants using a multi-feature approach

نویسندگان

  • John M. O’Toole
  • Geraldine B. Boylan
  • Rhodri O. Lloyd
  • Robert M. Goulding
  • Sampsa Vanhatalo
  • Nathan J. Stevenson
چکیده

AIM To develop a method that segments preterm EEG into bursts and inter-bursts by extracting and combining multiple EEG features. METHODS Two EEG experts annotated bursts in individual EEG channels for 36 preterm infants with gestational age < 30 weeks. The feature set included spectral, amplitude, and frequency-weighted energy features. Using a consensus annotation, feature selection removed redundant features and a support vector machine combined features. Area under the receiver operator characteristic (AUC) and Cohen's kappa (κ) evaluated performance within a cross-validation procedure. RESULTS The proposed channel-independent method improves AUC by 4-5% over existing methods (p < 0.001, n=36), with median (95% confidence interval) AUC of 0.989 (0.973-0.997) and sensitivity-specificity of 95.8-94.4%. Agreement rates between the detector and experts' annotations, κ=0.72 (0.36-0.83) and κ=0.65 (0.32-0.81), are comparable to inter-rater agreement, κ=0.60 (0.21-0.74). CONCLUSIONS Automating the visual identification of bursts in preterm EEG is achievable with a high level of accuracy. Multiple features, combined using a data-driven approach, improves on existing single-feature methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

Detection of 'EEG bursts' in the early preterm EEG: visual vs. automated detection.

OBJECTIVE To describe the characteristics of activity bursts in the early preterm EEG, to assess inter-rater agreement of burst detection by visual inspection, and to determine the performance of an automated burst detector that uses non-linear energy operator (NLEO). METHODS EEG recordings from extremely preterm (n=12) and very preterm (n=6) infants were analysed. Three neurophysiologists in...

متن کامل

Multi-feature classifiers for burst detection in single EEG channels from preterm infants

OBJECTIVE The study of electroencephalographic (EEG) bursts in preterm infants provides valuable information about maturation or prognostication after perinatal asphyxia. Over the last two decades, a number of works proposed algorithms to automatically detect EEG bursts in preterm infants, but they were designed for populations under 35 weeks of post menstrual age (PMA). However, as the brain a...

متن کامل

Aromatherapy as a Nutrition Improvement Approach in Premature Infants: A Short Review

Background: Literature presented numerous methods to promote nutrition in premature newborns. The aim of the review is to promote nutrition in premature newborns using numerous methods which have been suggested by systematic review. Materials and Methods: </...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017